Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis\{ μ - N-[1-(2-oxidophenyl)ethylidene]benzohydrazido\}bis[(dimethylsulfoxide)zinc(II)]

Hapipah M. Ali, ${ }^{\text {a }}$ Zuraini Kadir, ${ }^{\text {a }}$ M. Sukeri M. Yusof ${ }^{\text {b }}$ and Bohari M. Yamin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.024$
$w R$ factor $=0.068$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right]$, is a centrosymmetric dimer via a $\mathrm{Zn}-\mathrm{O}$ bridge of 2.0038 (13) \AA, with a $\mathrm{Zn} \cdots \mathrm{Zn}$ separation of 3.1370 (13) A. The geometry of the five-coordinate environment of the Zn atoms is close to trigonal bipyramidal.

Comment

It is known that recrystallization of some zinc complexes, such as Zn -3,5-diisopropylsalicylate in DMSO, has resulted in the formation of the DMSO derivative $\mathrm{Zn}(3,5-\mathrm{DIPS})_{2}(\mathrm{DMSO})_{2}$ (Morgant et al., 1998). Similarly, the title compound, (I), was obtained when $\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$ was recrystallized from DMSO. However, unlike monomeric $\mathrm{Zn}(3,5-\mathrm{DIPS})_{2^{-}}$ (DMSO) $)_{2}$, the crystal structure of (I) (Fig. 1) consists of centrosymmetric dimers, formed by linking two monomeric units through $\mathrm{Zn} 1-\mathrm{O}^{\mathrm{i}}$ and $\mathrm{Zn} 1^{\mathrm{i}}-\mathrm{O} 1$ bonds of 2.0038 (13) \AA (symmetry code in Table 1). The $\mathrm{Zn} 1 \cdots \mathrm{Zn} 1^{\mathrm{i}}$ separation is 3.1370 (13) A. The relatively rare five-coordinated zinc complex shows that both central Zn atoms have geometries between square-pyramidal and trigonal bipyramidal, though they are closer to the latter.

(I)

The bond distances and angles (Table 1) are normal (Orpen et al., 1989; Allen et al., 1987). The average $\mathrm{Zn}-\mathrm{O}$ distance of 2.02 (2) \AA is in agreement with the geometry of square pyramidal and trigonal bipyramidal, compared with $1.98 \AA$ for tetrahedral (Morgant et al., 1998) and $2.08 \AA$ for octahedral (Babb et al., 2003). The dimensions of the O, N, O^{\prime}-tridentate ligand are typical of those of a Schiff base. The central $\mathrm{Zn} 1 /$ $\mathrm{O} 1 / \mathrm{Zn} 1^{i} / \mathrm{O} 1^{\mathrm{i}}$ fragment is planar. The chelating $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 /$ N 1 [maximum deviation is 0.045 (2) \AA for C 6] and $\mathrm{O} 2 / \mathrm{C} 9 / \mathrm{N} 2 /$ $\mathrm{N} 1 / \mathrm{C} 10$ fragments are also planar, and inclined by $29.15(8)^{\circ}$ to each other. The two phenyl groups, C1-C6 and C9-C15, make a dihedral angle of $54.64(8)^{\circ}$.

There is a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular contact (Table 2). In the crystal structure, the centrosymmetric dimers are linked by intermolecular interactions, $\mathrm{C} 16-\mathrm{H} 16 \mathrm{C} \cdots \mathrm{O}^{\text {ii }}$

Received 3 July 2003 Accepted 21 July 2003 Online 31 July 2003

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids. The suffix A corresponds to symmetry code (i) in Tables 1 and 2.

Figure 2
Packing diagram of the title complex, viewed down c axis. The dashed lines denote $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular contacts.
(symmetry code as in Table 2) to form one-dimensional polymeric chains parallel to the a axis (Fig. 2).

Experimental

The title complex was synthesized by the template condensation of benzhydrazide $(2.00 \mathrm{~g}, \quad 0.015 \mathrm{~mol})$ and 2-hydroxyacetophenone $(2.00 \mathrm{~g}, 0.015 \mathrm{~mol})$ with zinc acetate dihydrate $(1.65 \mathrm{~g}, 0.007 \mathrm{~mol})$, with refluxing and stirring in ethanol for 5 h in the presence of triethylamine. The resulting pale-yellow solid was filtered and recrystallized from a minimum amount of DMSO. After standing at room temperature for 2 d , pale-yellow crystals were obtained.

Crystal data

$\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right] \quad Z=1$
$M_{r}=791.53$
Triclinic, $P \overline{1}$
$a=7.690(4) \AA$
$b=10.214$ (6) \AA
$c=11.643(6) \AA$
$\alpha=98.479$ (13) ${ }^{\circ}$
$\beta=94.262(12)^{\circ}$
$\gamma=110.338(13)^{\circ}$
$V=840.3(8) \AA^{3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.454, T_{\text {max }}=0.588$
10556 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.068$
$S=1.10$
3804 reflections
221 parameters
H -atom parameters constrained
$Z=1$
$D_{x}=1.564 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8764
reflections
$\theta=1.7-27.5^{\circ}$
$\mu=1.60 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pale yellow
$0.54 \times 0.48 \times 0.33 \mathrm{~mm}$

3804 independent reflections
3653 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0374 P)^{2}\right. \\
& +0.2073 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0148 \text { (15) }
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.0038(13)$	$\mathrm{O} 2-\mathrm{C} 9$	$1.2834(19)$
$\mathrm{Zn} 1-\mathrm{O} 2$	$2.0117(14)$	$\mathrm{O} 3-\mathrm{S} 1$	$1.5142(14)$
$\mathrm{Zn} 1-\mathrm{O} 3$	$2.0131(16)$	$\mathrm{S} 1-\mathrm{C} 16$	$1.761(2)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.0466(16)$	$\mathrm{S} 1-\mathrm{C} 17$	$1.781(2)$
$\mathrm{Zn} 1-\mathrm{O} 1$	$2.0683(15)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.294(2)$
$\mathrm{Zn} 1 \cdots \mathrm{Zn} 1^{\mathrm{i}}$	$3.1370(13)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.3949(17)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.3391(17)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.309(2)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 1$	$155.78(5)$	$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 1$	$78.70(6)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 2$	$105.70(6)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1$	$107.52(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 3$	$103.94(6)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1$	$79.24(5)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{O} 1^{i}-\mathrm{Zn} 1-\mathrm{N} 1}$	$101.22(6)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 1$	$100.46(5)$

Symmetry code: (i) $-x,-y, 1-z$.

Table 2
" $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.33	$3.167(3)$	149
$\mathrm{C} 16-\mathrm{H} 16 C \cdots 3^{\mathrm{ii}}$	0.96	2.42	$3.258(4)$	145

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1-x,-y, 1-z$.

After their location in a difference map, all H atoms were placed geometrically at ideal positions and allowed to ride on the parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

metal-organic papers

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-02-993.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G., \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Babb, J. E. V., Burrows, A. D., Harrington, R. W. \& Mahon, M. F. (2003). Polyhedron, 2, 673-686.

Morgant, G., Viossat, B., Daran, J.-C., Arveiller, M. R., Giroud, J.-P., Dung, N.-H. \& Sorenson, J. R. J. (1998). J. Inorg. Biochem. 70, 137-143.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

