Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hapipah M. Ali,^a Zuraini Kadir,^a M. Sukeri M. Yusof^b and Bohari M. Yamin^b*

^aDepartment of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia, and ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.024 wR factor = 0.068 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis{µ-N-[1-(2-oxidophenyl)ethylidene]benzohydrazido}bis[(dimethylsulfoxide)zinc(II)]

The title compound, $[Zn_2(C_{15}H_{12}N_2O_2)_2(C_2H_6OS)_2]$, is a centrosymmetric dimer *via* a Zn–O bridge of 2.0038 (13) Å, with a Zn···Zn separation of 3.1370 (13) Å. The geometry of the five-coordinate environment of the Zn atoms is close to trigonal bipyramidal.

Accepted 21 July 2003 Online 31 July 2003

Received 3 July 2003

Comment

It is known that recrystallization of some zinc complexes, such as Zn-3,5-diisopropylsalicylate in DMSO, has resulted in the formation of the DMSO derivative $Zn(3,5-DIPS)_2(DMSO)_2$ (Morgant *et al.*, 1998). Similarly, the title compound, (I), was obtained when $[Zn(C_{15}H_{12}N_2O_2)_2]$ was recrystallized from DMSO. However, unlike monomeric $Zn(3,5-DIPS)_2$ -(DMSO)₂, the crystal structure of (I) (Fig. 1) consists of centrosymmetric dimers, formed by linking two monomeric units through $Zn1-O1^i$ and $Zn1^i-O1$ bonds of 2.0038 (13) Å (symmetry code in Table 1). The $Zn1\cdots Zn1^i$ separation is 3.1370 (13) Å. The relatively rare five-coordinated zinc complex shows that both central Zn atoms have geometries between square-pyramidal and trigonal bipyramidal, though they are closer to the latter.

The bond distances and angles (Table 1) are normal (Orpen *et al.*, 1989; Allen *et al.*, 1987). The average Zn–O distance of 2.02 (2) Å is in agreement with the geometry of square pyramidal and trigonal bipyramidal, compared with 1.98 Å for tetrahedral (Morgant *et al.*, 1998) and 2.08 Å for octahedral (Babb *et al.*, 2003). The dimensions of the *O*,*N*,*O*'-tridentate ligand are typical of those of a Schiff base. The central Zn1/ O1/Zn1ⁱ/O1ⁱ fragment is planar. The chelating O1/C1/C6/C7/ N1 [maximum deviation is 0.045 (2) Å for C6] and O2/C9/N2/ N1/C10 fragments are also planar, and inclined by 29.15 (8)° to each other. The two phenyl groups, C1–C6 and C9–C15, make a dihedral angle of 54.64 (8)°.

There is a weak $C-H \cdots O$ intramolecular contact (Table 2). In the crystal structure, the centrosymmetric dimers are linked by intermolecular interactions, $C16-H16C \cdots O3^{ii}$

Figure 1

The molecular structure of (I), shown with 50% probability displacement ellipsoids. The suffix A corresponds to symmetry code (i) in Tables 1 and 2.

Figure 2

Packing diagram of the title complex, viewed down c axis. The dashed lines denote C-H···O intermolecular contacts.

(symmetry code as in Table 2) to form one-dimensional polymeric chains parallel to the *a* axis (Fig. 2).

Experimental

The title complex was synthesized by the template condensation of benzhydrazide (2.00 g, 0.015 mol) and 2-hydroxyacetophenone (2.00 g, 0.015 mol) with zinc acetate dihydrate (1.65 g, 0.007 mol), with refluxing and stirring in ethanol for 5 h in the presence of triethylamine. The resulting pale-yellow solid was filtered and recrystallized from a minimum amount of DMSO. After standing at room temperature for 2 d, pale-yellow crystals were obtained.

Crystal data

$[Zn_2(C_{15}H_{12}N_2O_2)_2(C_2H_6OS)_2]$	Z = 1
$M_r = 791.53$	$D_x = 1.564 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.690 (4) Å	Cell parameters from 8764
b = 10.214 (6) Å	reflections
c = 11.643 (6) Å	$\theta = 1.7-27.5^{\circ}$
$\alpha = 98.479 \ (13)^{\circ}$	$\mu = 1.60 \text{ mm}^{-1}$
$\beta = 94.262 \ (12)^{\circ}$	T = 293 (2) K
$\gamma = 110.338 \ (13)^{\circ}$	Block, pale yellow
$V = 840.3 (8) \text{ Å}^3$	$0.54 \times 0.48 \times 0.33 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.454, \ T_{\max} = 0.588$ 10556 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0374P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.024$	+ 0.2073P]
$wR(F^2) = 0.068$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
3804 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
-	Extinction coefficient: 0.0148 (15)

Table 1

Selected geometric parameters (Å, °).

Zn1-O1 ⁱ	2.0038 (13)	O2-C9	1.2834 (19)
Zn1-O2	2.0117 (14)	O3-S1	1.5142 (14)
Zn1-O3	2.0131 (16)	S1-C16	1.761 (2)
Zn1-N1	2.0466 (16)	S1-C17	1.781 (2)
Zn1-O1	2.0683 (15)	N1-C7	1.294 (2)
$Zn1 \cdots Zn1^{i}$	3.1370 (13)	N1-N2	1.3949 (17)
O1-C1	1.3391 (17)	N2-C9	1.309 (2)
O2-Zn1-O1	155.78 (5)	O2-Zn1-N1	78.70 (6)
$O1^i - Zn1 - O2$	105.70 (6)	O3-Zn1-N1	107.52 (5)
O1 ⁱ -Zn1-O3	103.94 (6)	$O1^i - Zn1 - O1$	79.24 (5)
O2-Zn1-O3	101.22 (6)	O3-Zn1-O1	100.46 (5)
O1 ⁱ -Zn1-N1	146.72 (5)	N1-Zn1-O1	84.59 (5)

3804 independent reflections

 $R_{\rm int} = 0.019$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -9 \rightarrow 9$

 $k = -13 \rightarrow 13$ $l = -15 \rightarrow 15$

3653 reflections with $I > 2\sigma(I)$

Symmetry code: (i) -x, -y, 1-z.

rable z			
$^{"}C-H \cdot \cdot \cdot O$	contacts	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O2^{i}$	0.93	2.33	3.167 (3)	149
$C16-H16C \cdot \cdot \cdot O3^{ii}$	0.96	2.42	3.258 (4)	145

Symmetry codes: (i) -x, -y, 1 - z; (ii) 1 - x, -y, 1 - z.

After their location in a difference map, all H atoms were placed geometrically at ideal positions and allowed to ride on the parent C atoms, with C-H = 0.93-0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C).$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-02-993.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G., & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Babb, J. E. V., Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2003). Polyhedron, 2, 673–686.

- Morgant, G., Viossat, B., Daran, J.-C., Arveiller, M. R., Giroud, J.-P., Dung, N.-H. & Sorenson, J. R. J. (1998). J. Inorg. Biochem. 70, 137–143.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.

- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.